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1. Introduction

The binding energy of the last neutron in a nucleus
can be assessed by determining the sum of gamma-ray
transition energies along a path from the capture state
to the nuclear ground state. This binding energy is
associated with a corresponding mass decrement by the
Einstein relation, E = mc 2. We begin by exploring the
structure of this connection and its consequences
(Sec. 2). Thereafter we describe the apparatus and
procedures for accurate gamma-ray wavelength mea-
surements by the GAMS4 facility at the Institut
Laue-Langevin (ILL) (Sec. 3). In the remainder of the
paper (Sec. 4), we summarize recent applications of
GAMS4 to a measurement of the 2.2 MeV binding
energy of deuterium and the neutron mass and to the
first crystal diffraction measurement of the 8.6 MeV
36Cl binding energy.

2. The Connection Between Gamma-Ray
Energies and the Fundamental
Constants

In recent years, a new mass spectroscopic technique
that measures atomic masses by comparing the cy-
clotron frequencies of two different trapped ions has
been developed. The results obtained are more than an
order of magnitude more accurate than previous atomic
mass determinations [1, 2]. This dramatic reduction in
the uncertainty of atomic mass measurements has re-
newed interest in the connection between atomic masses
and precisely measured wavelength intervals that can
lead to precise values for the neutron mass and the molar
Planck constant. In Sec. 2.1 we describe this connection
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in the context of present day uncertainties. In Sec. 2.2
we describe a speculative framework within which the
relationship between atomic mass and gamma ray
measurements has new significance.

2.1 GAMS4 and the Molar Planck Constant

Two definitions are critical for the arguments that
follow: the atomic mass unit and the Avogadro
constant. One atomic mass unit (u) is defined as
1/12 times the mass of a 12C atom. The related
Avogadro constant NA is defined as the number of
atoms present in 12 g of 12C (thus one mole of 12C atoms
weighs exactly 12 g).

We begin by considering a typical neutron capture
reaction

n + AX → A+1X + �’s. (1)

Energy conservation applied to this reaction yields

[Ar(n)u]c 2 + [Ar(AX)u]c 2 = [Ar(AX)u]c 2 +
hc

� *
A+1

(2)

where A r is the unitless relative atomic mass
(Ar(12C)=12), u is the mass of an atomic mass unit, h is

the Planck constant, c is the speed of light, and
1

� *
A+1

represents the sum of reciprocal wavelengths over those
gamma-rays which connect the A+1X capture state to the
ground state (typically 3 gamma-rays for GAMS4 mea-
surements). Several things are worth noting in this
equation:

• The experiments described in Refs. [1] and [2]
measure Ar

• u = �10–3

NA
�

SI
kg where {}SI indicates the numerical

value of the quantities contained in the curly brack-
ets when expressed in their respective SI units

• In a neutron reactor the characteristic energy of the
neutron is 0.06 eV (the target atom is at rest); this
kinetic energy introduces a small neutron incident
angle dependent correction to our analysis; if, as
happens experimentally, there is averaging over the
angle, a tiny second order correction remains
(1.3�10–8 for neutron capture on hydrogen)

• � *
A+1 includes a correction for the A+1X recoil energy

Rearranging Eq. (2) we obtain

Ar(n)+Ar(AX)–Ar(A+1X)=�10–3 NAh
c �

SI
� 1

� *
A+1
�

SI
(3)

This equation expresses a relationship between mass
measurements in atomic mass units and wavelength

measurements in meters. We adopt the viewpoint that it
contains three types of “measurable” quantities: Ar, � ,
and NAh /c . We consider the experimental uncertainties
on each of these three quantities in turn. All uncertain-
ties given in this paper are one standard deviation
estimates.

The conversion factor that connects atomic mass
measurements with wavelength intervals in Eq. (3) is the
molar Planck constant NAh divided by c, where c is an
exactly defined quantity. Although a value for this
conversion factor with a relative uncertainty of
9.0�10–8 is available from Ref. [3], a significantly more
accurate value can de derived from recent measurements
of fundamental constants. It can be shown that [4]

�10–3 NAh
c �

SI
= �Ar (e) � 2

2R�
�

SI
(4)

where

Ar(e) = relative atomic mass of the electron

= 5.485 799 111(12)�10–4 [5]

� –1 = inverse fine-structure constant

= 137.035 999 58(52) [6]

R� = Rydberg constant

= 10 973 731.568 639(91) m–1 [7]

which leads to the conversion factor

1 m–1 = 1.331 025 045(11)�10–15 u (5)

(relative uncertainty of 7.9�10–9). The dominant source
of error in this expression comes from the fine structure
constant [6].

As discussed in Sec. 4, the GAMS4 facility
(described in Sec. 3) is now capable of measuring � *

A+1

in a few nuclei with a relative estimated standard devia-
tion ur � 2�10–7 while the mass doublet ratios measure-
ments described in Refs. [1] and [2] may soon reach
an uncertainty ur � 5�10–11. For typical values of
the atomic weight, A, this translates into an uncer-
tainty ur � 2�10–7 on the quantity Ar(n) + Ar(AX) –
Arur (A+1X).

Evidently, NAh/c can be considered as either: 1. An
otherwise established numerical value; or 2. An object
to be measured. The consequences are then as follows:

When NAh/c is taken as given: Given the small uncer-
tainty on NAh/c it is reasonable to proceed from the
viewpoint that its value is certain. In that case, Eq. (3)
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can be used to calibrate wavelength intervals using mass
measurements as input, or to check atomic mass inter-
vals using wavelength measurements as input (the rela-
tive uncertainties in both measured quantities are com-
parable). However, one other issue must be addressed.
Equation (3) contains the neutron mass that cannot be
measured with a trap. However, it can be determined,
and subsequently eliminated from consideration, if the
special case of neutron capture on hydrogen is consid-
ered

Ar(n)+Ar(H)–Ar(D)=�10–3 NAh
c �

SI
� 1

� *
D
�

SI
(6)

where D refers to deuterium or 2H. Our recent measure-
ment of the deuteron binding energy S(D) (or equiva-
lently � *

D) combined with Eq. (5) and mass spectro-
scopic measurements of Ar(H) and Ar(D) yields a precise
value for Ar(n) (see Sec. 4.1).

When NAh/c is to be measured: Despite the small
uncertainty on NAh/c we may view Eq. (3) as providing
a means to measure it. To extract the molar Planck
constant, we start by subtracting Eq. (3) from Eq. (6) to
obtain

Ar(A+1X)+Ar(H) – Ar(AX) – Ar(D)=

�10–3 NAh
c �

SI
� 1

� *
D

–
1

� *
A+1
�

SI
(7)

where {}SI is implied for all wavelengths. Practical
considerations of this conceptual equation lead to an

optimum strategy for obtaining �10–3 NAh
c �

SI
.

The atomic mass difference on the left side is ob-
tained from ion mass ratios by taking into account chem-
ical binding energies and ionization energies. To illus-
trate how the uncertainty of the ion mass ratio translates
into an uncertainty of the atomic mass difference, we
use the mass doublet ratio AXD+/A+1XH+ as an example
[8].

r =
Ar(AXD+)

Ar(A+1XH+)
=

Ar(AX)+Ar(D)–Ar(e)+Ar(�E1)

Ar(A+1X)+Ar(H)–Ar(e)+Ar(�E2)

(8)

where �E1 and �E2 are the appropriate chemical bind-
ing and ionization energies. This equation is easily trans-
lated into the mass difference

Ar(A+1X)+Ar(H)–Ar(AX)–Ar(D) =

(1–r )[Ar(A+1X)+Ar(H)–Ar(e)]+Ar(�E1)–rAr(�E2)

(9)

Although Ar(A+1X) and Ar(H) appear on the right hand
side of this equation, they are multiplied by (1–r ) which
is typically on the order of 10–3 and thus do not need to
be known very precisely. The uncertainty of the mass
difference is essentially the uncertainty of the small
factor (1–r ). Since the mass difference on the left hand
side is typically in the 6 to 9�10–3 range, the factor
(1–r ) becomes smaller as the mass A increases. Thus,
for a given relative uncertainty of the ion mass doublet
ratio, r, the relative uncertainty of (1–r ) and the atomic
mass difference increases with increasing A .

The wavelengths on the right hand side of Eq. (7) are
obtained from GAMS4 measurements. The magnitude
of 1/� *

A+1 is typically 3 to 5 times larger than that of 1/� *
D

and the relative uncertainty of the � *
A+1 and � *

D are nearly
the same. Thus the relative uncertainty of the right hand
side is dominated by the relative uncertainty of � *

A+1.
The relative uncertainty of the GAMS4 measurements is
small when the binding energy interval S (A+1X)–S (D) is
large.

The molar Planck constant in combination with other
quantities whose values are very well known leads to a
determination of the fine structure constant, � , as is
shown by the following equation

� –1 = � Me

2R��NAh

c ��
1/2

(10)

where Me is the electron molar mass and R� is the
Rydberg constant. Note the similarity of Eqs. (4)
and (10). The relative uncertainty of � from Eq. (10)
is dominated by the molar Planck constant
(ur � 1 to 2�10–7 ) and is to a good approximation one
half the relative uncertainty of the molar Planck con-
stant. However, there are a number of other ways to
determine � which have already achieved a relative un-
certainty less than 1�10–7. Table 1 shows the other
major experimental approaches to the determination of
� . The physics contained in these equations is extremely
varied. Consistency among the different approaches
probes both the reliability of the experiments and the
existence of new physics.
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Table 2 gives the magnitude of the relative uncertainty
contributions from the mass difference and the GAMS4
wavelength measurements to the molar Planck constant
for several nuclei. In addition, the total relative uncer-
tainty contributions to the molar Planck constant and �
are listed. Because of the low efficiency of GAMS4, the
list of candidate nuclei is rather short. In every case
except nitrogen, the two uncertainty contributions are

comparable. In the case of nitrogen the mass difference
contribution is quite small. The binding energy interval
is also quite large (10.8–2.2 = 8.6 MeV). For these rea-
sons, a precise measurement of S (15N) is highly desir-
able. Unfortunately the intensities of the gamma rays in
nitrogen are quite low and it remains to be seen if a
measurement in that system is possible. At present, it
appears that Cl, S, and Si are promising candidates.

Table 1. Major approaches to the determination of the fine structure constant, � . For definitions of the constants appearing in these equations,
refer to the references listed with each equation

ae = C1��
�
� + C2��

�
�2

+ C3��
�
�3

+ ... (11) ae = ge–1 anomalous moment [5] ur � 4�10–9

� –1 = � 2

�0c
{RK}

LAB �	LAB

	
� 	� (12) von Klitzing constant RK = h /e 2 [9] ur � 3�10–8

� –1 = ��'p

�B

�2e

h
�

LAB

{RK}
LAB

2�0R� {�'p}LAB

kg

s2 A2�
1/3

(13) von Klitzing, Josephson junction, and �'p[10,11] ur � 6�10–8

� –1 = ��2R�

c
� �Ar(n)

Ar(e)
� � h

mn

��
1/2

(14) h/mn = �v Krüger et al. [12] ur � 4�10–8

� –1 = ��2R�

c
� �Ar(Cs)

Ar(e)
� � h

mCs

��
1/2

(15) h/mCs = �v Chu et al. [13] ur � 4�10–8 (preliminary)

Table 2. Uncertainty contributions to a determination of the molar Planck constant, NAh , and the fine structure constant, � , for several candidate
nuclei. For each case the relative uncertainties of the mass doublet ratio, Ar (

AXD+)/Ar (
A+1XH+), and � *

A+1 are assumed tobe ur = 5�10–11 and
ur = 2�10–7, respectively

S (A+1X) ur–NAh ur–NAh ur–NAh ur–�

A+1X (MeV) GAMS4 �M total total Notes

15N 10.8 2.6�10–7 8.7�10–8 2.7�10–7 1.4�10–7 This presents an intensity
problem for GAMS4

29Si 8.5 2.8�10–7 2.2�10–7 3.6�10–7 1.8�10–7 Not yet measured with GAMS4

33S 8.6 2.8�10–7 2.5�10–7 3.7�10–7 1.9�10–7 Has been measured with GAMS4

36Cl 8.6 2.8�10–7 2.7�10–7 3.9�10–7 1.9�10–7 Has been measured with GAMS4
(see Sec. 4.2); 36Cl is slightly
Radioactive which complicates
the trap experiment

49Ti 8.1 2.8�10–7 3.9�10–7 4.9�10–7 2.4�10–7 Not yet measured with GAMS4
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2.2 A Test of Special Relativity: Does E = mc 2?

In this section we describe a unique feature of the
connection between atomic mass measurements and
gamma-ray wavelength measurements in the context of
a test of special relativity. A more detailed discussion is
found in Ref. [14]. According to the special theory of
relativity

• The rest energy E of a particle of mass m is given by
E = mc 2

m, where cm is the limiting velocity of a mas-
sive particle

• the energy of a photon of frequency 
 is given by

E = h
 =
hcem

�
where cem is the velocity of propaga-

tion of an electromagnetic wave in vacuum.

• cm = cem = c

Michelson-Morley and Hughes-Drever experiments
look for anomalous velocity-dependent effects that arise
from motion of a test system with respect to a preferred
frame. Tests of the equality of cm and cem are another
class of tests that are sensitive to a violation of special
relativity and a preferred frame. The basic test will be

�mc 2
m =

hcem

�
(16)

in which a photon of wavelength � is emitted in a
transition where a mass �m is converted into electro-
magnetic radiation.

The test is most conveniently formulated in terms of
two fine structure constants

�m =
e 2

�cm
and �em =

e 2

�cem
(17)

where it is assumed that e and � are universal constants.
A careful analysis reveals that the � obtained via the von
Klitzing constant is �em (Eq. (12) in Table 1) while �
derived via GAMS4 and the mass difference measure-
ments is a realization of �m. This could ultimately

provide a determination of �1–
cm

cem
�with an error at the

level of (1 to 2)�10–7. Currently the most accurate
realization of �m comes from the Rydberg constant R�

and the Compton wavelength of the electron �C through
the relation

�m = �2R��C (18)

It yields

�1–
cm

cem
� = 1(12)�10–6 (19)

Unlike other tests of special relativity, this limit does not
depend on assumptions concerning the motion of the
laboratory with respect to a preferred frame.

3. The GAMS4 Facility

The GAMS4 gamma-ray spectroscopy facility is a
two axis flat crystal spectrometer located at the high
flux reactor of the ILL. The instrument is used to study
radiation produced in neutron capture reactions and is
coupled to a reactor port which is specially equipped to
transport and hold sources in a position tangential to the
reactor core. Precision gamma-ray measurements which
impact the fundamental constants require knowledge of
two quantities, the lattice spacing, d, and the diffraction
angle, � . These two quantities are combined using the
Bragg condition for diffraction, � = 2dsin(� ), to obtain
the wavelength, � , of the gamma ray. In a typical
neutron capture reaction n + AX → A+1X + �, the wave-
length or energy of the gamma ray is related to the mass
of the neutron and the atomic masses of the source and
product species. This link between the gamma-ray wave-
lengths and the atomic masses leads to certain funda-
mental constants as described above. The Bragg angles
through which the gamma rays are diffracted by nearly
perfect crystals of Si or Ge are measured using the
GAMS4 facility. The lattice spacings of the diffracting
crystals are determined elsewhere by measuring a crys-
tal lattice spacing in terms of an optical wavelength
and by measuring the small lattice spacing differences
between crystal samples.

3.1 Principle of the Bragg Angle Measurements

Figure 1 shows the crystal arrangements for the Bragg
angle measurements and introduces the important
concept of non-dispersive and dispersive geometries.
Radiation from the source strikes the first crystal and
all wavelengths that satisfy the Bragg condition are
diffracted. The angular spread of the incoming beam is
on the order of 1.3�10–4 rad for the GAMS4 facility. In
the nondispersive geometry, the planes of the two crys-
tals are parallel so that the second crystal simultaneously
diffracts all wavelengths that are diffracted by the first
crystal. By rocking the second crystal around the Bragg
angle, a profile that is an accurate representation of the
instrument response function is recorded. For a true
nondispersive position (same lattice spacing and orders
for both crystals) the recorded profile is insensitive to
the spread in wavelength of the incoming radiation.
The spectrometer is then configured to the dispersive
geometry by keeping the first crystal fixed and rotating
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the second crystal through 2�Bragg. In this geometry the
second crystal does not simultaneously diffract all wave-
lengths diffracted by the first crystal. As the second
crystal is rocked about the Bragg angle, the Bragg con-
dition is satisfied sequentially for the wavelengths
diffracted by the first crystal. Thus the recorded profile
is a convolution of the instrument response function and
the spread in wavelength of the incoming radiation.
For many gamma rays, the spread in wavelength of the
incoming radiation is very small so that the nondisper-
sive and dispersive profiles are nearly identical. Accu-
rate measurement of the angular distance between the
nondispersive and dispersive geometries determines the
Bragg angle.

3.2 GAMS4 Facility Layout

The spectrometer is located on the ILL reactor floor
so that it can accept radiation from sources placed in the
“through tube” H6-H7 as shown in Fig. 2. The GAMS4
and GAMS5 spectrometers are located on the H6 and
H7 sides of the through tube, respectively. The source
changing mechanism and shield are located on the H6
side of the through tube between the reactor biological
shield and the GAMS4 environmental chamber. Details
concerning the through tube and the source changer are
available in Ref. [15].

Fig. 1. Schematic drawing of Bragg angle measurements using a two crystal spectrometer. The instru-
ment response function is recorded using the non-dispersive geometry on the left and the gamma
ray/instrument convolution function is recorded using the dispersive function on the right.
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The GAMS4 environmental chamber is constructed
out of concrete blocks lined with acoustical insulation.
Inside the concrete blockhouse is a thermal enclosure
that contains the vibration isolation platform, the spec-
trometer, and the collimators. Between the concrete
blockhouse and the thermal enclosure is a heating sys-
tem, which is used to stabilize the temperature of the
spectrometer. Temperature variations of a few hun-
dredths of a 
C per day are typical. The detector is
cryogenically cooled and is outside of the thermal enclo-
sure. The vibration isolation platform is 2 m�3.5 m and
permits moving the spectrometer and collimators out of
the gamma-ray beam in order that the curved crystal
spectrometer (GAMS23) which is located behind
GAMS4 can be used. The position of the vibration isola-
tion platform is stabilized with respect to the reactor
floor using non-contacting proximity detectors and a
electro-pneumatic servosystem similar to that described
in Ref. [16]. All six degrees of freedom of the platform
are stabilized to within a few microns and a few seconds
for many months. During a measurement, the position
of the spectrometer and the collimator on the vibration
isolation platform are varied and the vibration isolation
platform must respond to this change in loading.

3.3 Two Crystal Spectrometer

The heart of the GAMS4 facility is the two crystal
spectrometer that is shown in a very simplified way in
Fig. 3. As was pointed out in Fig. 1, the Bragg angle is
related to the relative angle between the two crystals.
Therefore, rigid coupling of the two axes and the two
interferometers that measure the rotations of the two
axes is important. The spectrometer chassis is a cast
iron hollow block 91 cm�30 cm�20 cm with 2.5 cm
thick walls to which a precision optical square was
permanently attached at the outset. All subsequent me-
chanical, optical, and crystal alignments are referenced
to this five-sided optical square. The axes are defined by
high precision bearings and are aligned with respect to
the optical square and to each other within 1 s. The
separation between the axes is approximately 53 cm.

The rotation of each axis is measured with a polariza-
tion encoded Michelson interferometer that has an an-
gular sensitivity of a few � 10–4 s. The stationary opti-
cal elements are located on the spectrometer chassis
between the two axes. Two corner cubes are mounted
on an arm that is rigidly attached to the rotating crystal
table and retro-reflect the light in each arm of the inter-
ferometer. A detailed description of the angle interfer-
ometers is given in Refs. [17, 18].

Fig. 2. Layout of the GAMS4 precision gamma-ray spectroscopy facility on the ILL reactor floor.
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In order to convert interferometer fringes into angles,
the interferometers are calibrated using an optical
polygon and a photoelectric autocollimator to sense the
directions normal to the faces of the optical polygon.
Although the first axis is occasionally calibrated, the
Bragg angle measurements as described above depend
only on the calibration of the second axis. A 24-sided
optical polygon (external angles �15
) is permanently
mounted on this axis using matching face gears with
360 teeth so that the polygon can be indexed in multiples
of 1
 with respect to the axis and the corner cube arm.
After measuring one of the external polygon angles in
terms of interferometer fringes, the polygon is automat-
ically indexed so that the next pair of faces can be
viewed by the autocollimator and the corresponding
external angle measured in fringes. After measuring all
24 external angles, the sum is constrained to equal 360
.
The relative uncertainty of the angle calibrations is
ur�1�10–7. More details concerning the angle calibra-
tion are available in Refs. [17, 18].

3.4 GAMS4 Crystals

Nearly perfect Si or Ge crystals diffract the gamma
rays. Fig. 4 shows the crystal shape and mounting that
has been used to obtain strain free specimens. The steel
base provides a convenient way to attach the crystal to
the spectrometer axis. The crystal base is the same
material as the diffracting crystal and provides an essen-
tial material transition between the steel base and the

diffracting crystal. The portion of the crystal that is used
for diffraction is approximately 4 mm�50 mm which is
slightly larger than the area of the sources that can
be inserted in the reactor. The alignment mirror is a
polished surface that serves as a reference to align the
crystal planes parallel to the axis. The strain relief cut
isolates the polished alignment surface that may be
strained from the diffracting crystal planes. The three
parts (steel base, crystal base, and diffracting crystal)
are attached using low-shrink epoxy.

The lattice spacings of the GAMS4 crystals are
measured with a relative uncertainty of ur � 5�10–8

using absolute and relative lattice parameter measure-
ments. At the present time, four National Standards
Laboratories contribute to these measurements. The
Physikalisch-Technische Bundesanstalt (PTB), the
Istituto di Metrologia “G. Colonnetti” (IMGC), and
National Research Laboratory of Metrology (NRLM)
are engaged in absolute lattice parameter measurements
and PTB and the National Institute of Standards and
Technology (NIST) are engaged in relative lattice
parameter measurements. In order to clearly describe
the lattice parameter measurements we present in Table
3 an example lattice parameter measurement using the
actual values obtained for the 2.5 mm thick Si crystals.
In the absolute lattice parameter measurements, the
lattice spacing of a particular silicon crystal is measured
in terms of an optical wavelength that provides a d
for that particular crystal in meters. The results of the
three national laboratories that have carried out these

Fig. 3. Schematic of the GAMS4 two crystal spectrometer. A: first crystal; B: first axis angle interfero-
meter; C: second crystal; D: second axis angle interferometer; E: polygon for angle calibration.
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measurements are given in the second column of Table
3. Details of these very careful measurements are avail-
able in Refs. [19–21]. We have been provided with Si
samples from the actual crystals used in the absolute
lattice parameter measurements by two of the laborato-
ries (IMGC and NRLM) and with a Si sample whose
lattice parameter is known relative to the sample used
for the absolute lattice parameter measurement by the
third laboratory (PTB). Using the NIST lattice compari-
son spectrometer, relative lattice parameter measure-
ments have been made between these three crystal
samples and samples from the material used to make the
gamma-ray crystals. Ref. [17] describes the NIST lattice
comparison spectrometer in detail. In Table 3, column 3,

the relative lattice parameter measurements for the
GAMS4 2.5 mm thick crystals are given. The absolute
lattice parameter measurements for the GAMS4 2.5 mm
thick crystals are given in column 4 with the final aver-
age given in the last line. The uncertainty has been
expanded to 5�10–8 to account for inconsistencies in the
absolute and relative lattice parameter measurements. In
general, the relative uncertainty of the crystal lattice
spacing measurements is more than a factor of two less
than the uncertainty of the Bragg angle measurements.
Thus, significant improvement in the wavelength
measurements is directly related to improvement in the
Bragg angle measurements.

4. Wavelength Measurements

We now turn to a description of two recent GAMS4
experiments that were devoted to gamma-ray wave-
length measurements that impact the fundamental
constants. In the first experiment, a new value for the
neutron mass was determined by directly measuring the
deuteron binding energy. In the second experiment, the
binding energy of 36Cl was determined by summing
three transitions in the 36Cl cascade. As described in
Sec. 2.1, this measurement can lead to a new value of the
molar Planck constant, NAh .

4.1 Deuteron Binding Energy

The deuteron binding energy, S (d), was determined
by measuring the 2.2 MeV gamma ray emitted in the
reaction n + p ⇒ d + � and correcting the measured
energy for recoil. The 2.2 MeV transition connects the
capture state and the ground state. The neutron mass,
m (n), is obtained by expressing this reaction in atomic
mass units, m (n) = m (2H) – m (1H) + S (d), and combin-
ing the deuteron binding energy with precision atomic
mass measurements. Since a detailed description of this
measurement is available in Ref. [22], the discussion
presented here will be rather brief.

Fig. 4. GAMS4 diffraction crystal. A: steel base; B: crystal base;
C: diffraction crystal; D: gamma-ray diffracting planes; E: alignment
mirror; F: strain relief cut.

Table 3. Lattice spacing of the ILL2.5 crystals

d (220)a ILL2.5–column2 d (220)a

ILL2.5
Absolute lattice crystal ILL2.5

(pm) (pm)

PTB 192.0 155 63(12) 1.7(1.7) � 10–8 b 192.0 155 66(12)
IMGC 192.0 155 51(5) 8.6(1.0) � 10–8 c 192.0 155 676(54)
NRLM 192.0 155 87(10) 3.4(1.0) � 10–8 c 192.0 155 93(10)

Mean d (220) ILL2.5 192.0 155 723(96)

a t = 22.5 
C in vacuum.
b Includes PTB and NIST comparisons.
c Direct NIST comparisons
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The gamma-ray source consisted of three thin walled
graphite holders filled with � 6 g of Kapton plastic
(chemical formula N2H10O5C22). Kapton is a convenient
source of hydrogen that is compatible with the reactor
environment. The estimated total activity of the
2.2 MeV line at the beginning of the measurement was
1.6�1013 Bq. The gamma rays were diffracted by nearly
perfect Si crystals having a thickness of 2.5 mm and the
(220) crystal planes available for diffraction. This partic-
ular set of crystals was used in the example given in
Sec. 3.4 above concerning the measurement of the
crystal lattice spacing. Thus the lattice spacing values
given in Table 3 are for this particular set of crystals.
Gamma-ray profiles were recorded in three differ-
ent configurations of the two axis spectrometer:
(m, n ) = (1,–2) and (1,2); (2,–1) and (2,2); (1,–3) and
(1,3) where (m,n ) denotes the reflection orders of the
first (A) and second (B) crystals, respectively. The
Bragg angles, peak count rates, and background count
rates for the various crystal orders are given in Table 4.
Note that no nondispersive profiles were recorded be-
cause the detector would be in the direct beam. The
combination of small Bragg angles and low count rates
is the reason precision measurement of this line is diffi-
cult. The profiles were fitted with a numerical profile
generated using dynamical diffraction theory broadened
with a Gaussian function to account for crystal imper-
fections, vibrations, and thermal motion of the atoms in
the source. The adjustable parameters in the fit are the
position, intensity, background, and Gaussian width.
The sequence of profile recording was typically –cw,
+cw, +ccw, –ccw where – and + refer to the less and
more dispersive profiles, respectively, and cw and ccw
indicate clockwise and counter clockwise rotation of the
axis. Bragg angles were obtained from the profile fringe
values using an angle calibration recorded immediately
before or after the measurements. For each configura-
tion, multiple (�25) determinations of �Bragg were made.

Wavelengths were determined by combining the mea-
sured Bragg angle and the crystal lattice spacing using
the Bragg condition for diffraction, � = 2dsin� . The

wavelength of the 2.2 MeV gamma ray was determined
to be �meas = 5.576 712 99(99)�10–13 m. This measured
gamma-ray wavelength must be corrected for
recoil to obtain a wavelength, �*, that corresponds to
the binding energy of the deuteron, S (d). The value
obtained for �* is �* = 5.73 409 78(99)�10–13. The
deuteron binding energy, S (d), can be expressed in
atomic mass units and eV by using the inverse meter
to atomic mass unit [(Eq. (5)] and the inverse meter
to eV conversion factors. The results are: S (d) =
2.388170 07(42)�10–3 u and S (d)=2 224 566.14(41)eV.
Finally the mass of the neutron is obtained from the
equation m (n) = m (2H)–m (1H) + S (d) where the most
precise value for m (2H)–m (1H) is available from
Ref. [2], m (2H)–m (1H) = 1.006 276 746 30(71) u. The
result is m (n) = 1.008 664 916 37(82) u.

4.2 36Cl Binding Energy

Building on the experience gained during the
2.2 MeV gamma-ray measurement, we turned our atten-
tion to the measurement of the gamma rays produced in
the reaction n + 35Cl ⇒ 36Cl + �’s (8.6 MeV). The 36Cl
binding energy, S (36Cl), is most conveniently obtained
by summing three gamma rays, one of which has an
energy near 6 MeV. The high capture cross section of
35Cl (� = 43.3�10–24 cm2) allows it to offer the most
intense gamma cascade among those light nuclei with
level structures suited to measurement of the neutron
separation energies. The complementarity of the high
energy gamma-ray and atomic mass measurements can
be seen by expressing this reaction in atomic mass units,
m (n)–S (36Cl) = m (36Cl)–m (35Cl). The 36Cl binding
energy and the neutron mass determined above provide
a measure of the atomic mass difference m (36Cl)–
m (35Cl). Conversely, if the atomic mass difference
m (36Cl)–m (35Cl) is known, then a value for the molar
Planck constant, NAh, can be extracted as explained in
Sec. 2.1 above.

The gamma-ray lines that were measured to deter-
mine the 36Cl binding energy are shown in the energy
level diagram in Fig. 5. The binding energy is obtained
as the sum of the 517.1, 1951.1, and 6111.0 keV lines
after correction for recoil. The 786.3 and 1164.9 keV
lines measure the same interval as the 1951.1 keV line
and provide a test of the internal consistency of our
measurements. Our earlier measurements of the lines
below 2 MeV [23] were made with the original installa-
tion of GAMS4. Significant improvements made
during the intervening 13 years permit realization of
higher accuracy in the new results reported here. The
chlorine gamma radiation was produced by placing
three graphite target holders containing natural high
purity NaCl near the reactor core in a neutron flux

Table 4. Crystal orders, Bragg angles, and count rates for the d
binding energy measurement

A crystal B crystal Peak Background
Order Bragg angle Order Bragg angle count rate count rate

(m ) (deg) (n ) (deg) (s–1) (s–1)

1 0.083 –2 0.166 1.02 0.035
1 0.083 2 0.166 0.78 0.078
1 0.083 –3 0.249 0.21 0.008
1 0.083 3 0.249 0.18 0.079
2 0.166 –1 0.083 0.90 0.048
2 0.166 2 0.166 0.29 0.063
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of � 5�1014 cm–2 s–1. Each target contained 1.5 g of
NaCl and had a volume of 2 mm�35 mm�25 mm. The
estimated total activity of the 36Cl was about
6�1014 Bq. Two sets of crystals were used for these
measurements. The first set, the same crystals used for
the deuteron binding energy measurement, had two
crystals of equal thickness (2.5 mm). The second set had
two crystals of unequal thickness (4.41 mm and
6.95 mm). The thinner crystals are more appropriate for
the lower energy lines, while the thicker crystals are
superior for the 6.1 MeV line. This fact is illustrated in
Fig. 6, which shows the integrated reflectivity vs crystal
thickness for three orders at 6.1 MeV. For low count rate
measurements, the intensity can be significantly in-
creased by carefully choosing the crystal thickness. The
lattice spacing of the 4.4/6.9 mm crystal set was deter-
mined using a procedure that was similar to that em-
ployed for the 2.5 mm set. The relative uncertainty of
the measured lattice spacing of the 4.4/6.9 mm crystal
set is ur � 5�10–8.

Each line was measured in at least two orders that
were chosen on the basis of high crystal reflectivity and
small diffraction width. The energies, crystals, orders,

and approximate Bragg angles are given in Table 5. The
small Bragg angle (0.061
 in first order) through which
the 6.1 MeV radiation is diffracted places very stringent
requirements on the accuracy of the angle measure-
ments in order to obtain binding energy measurements
with a relative uncertainty ur < 1�10–6.

Fig. 6. Theoretical integrated reflectivity at E = 6.1 MeV for
three low-order single crystal Si reflections.Fig. 5. Decay scheme of 36Cl showing only the transitions measured

in this work. The numbers in parentheses are the number of � rays per
100 neutron radiative captures.

Table 5. Energies, crystals, orders, and Bragg angles for the 36Cl
binding energy measurement

A crystal B crystal
Energy Thickness Order Bragg angle Order Bragg angle
(keV) (mm) (m ) (deg) (n) (deg)

517.1 2.5 2 0.716 �2 0.716
517.1 2.5 2 0.716 �3 1.074
786.3 2.5 1 0.235 �1 0.235
786.3 2.5 3 0.706 �3 0.706

1164.9 2.5 2 0.318 �2 0.318
1164.9 2.5 3 0.477 �3 0.477
1951.1 2.5 1 0.085 �2 0.190
1951.1 2.5 2 0.190 �2 0.190
6111.0 2.5; 4.4/6.9 1 0.030 +1 0.030
6111.0 2.5; 4.4/6.9 1 0.030 +2 0.061
6111.0 2.5; 4.4/6.9 1 0.030 �3 0.091
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Fig. 7. Typical profiles and fits for the 517 keV and 1951 keV
lines in 36Cl.

Fig. 8. Typical profiles and fits for the 6.1 MeV transition in 36Cl. Note that the profiles on the left and right were recorded with the 2.5 mm and
4.4/6.9 mm thick crystals, respectively.
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The profile analysis and the extraction of Bragg
angles are almost identical to that described above for
the 2.2 MeV gamma ray. The only difference is that the
small Gaussian broadening of the lower energy lines
includes a contribution due to recoil following the emis-
sion of a primary gamma ray in addition to the contri-
butions mentioned above. Typical profile scans and the
fit for a representative number of energies and orders are
given in Figs. 7 and 8. In Fig. 8, it is important to note
that the profiles obtained with the thicker crystals are
not only more intense, but also significantly
narrower. For each order and transition, multiple (>5)
determinations of �Bragg were made.

Wavelengths are determined by combining the mea-
sured Bragg angles and the lattice spacings using the
Bragg condition for diffraction, � = 2dsin� . Before
publishing final wavelength values for the five Cl lines
and the 36Cl binding energy, further data analysis of the
Bragg angle measurements and additional lattice
spacing measurements on the 4.4/6.9 mm crystals must
be completed. At the present state of the data analysis,
it appears that the relative uncertainty of the lower
energy lines is � 2 to 3�10–7, of the 6.1 MeV line is
4�10–7, and of the 36Cl binding energy is 3�10–7.
These uncertainties along with the equation for the reac-
tion in atomic mass units, m (n)–S(36Cl) = m (36Cl)–
m (35Cl), allows us to estimate the uncertainty of the two
sides of this equation. The relative uncertainty of the
left-hand side is{[m (n) = 1.008 664 916 37(82) u]–
[S (36Cl) =
0.009 211 000(3) u (approximate value with a reli-
able uncertainty estimate)]} � 3�10–9. The relative
uncertainty of the right hand side is {[m(36Cl) =
35.968 306 945(83)]–[m (35Cl) = 34.968 852 707(42)]}
� 9�10–8 [24]. In this case, the gamma-ray measure-
ments lead to a more accurate value for the m(36Cl)–
m (35Cl) mass difference than is currently available
from the atomic mass measurements. When more
precise atomic mass measurements of Cl become
available, then this same equation can be used to deter-
mine a value for the molar Planck constant, NAh.
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